J Glob Optim (2007) 37:11-26
DOI 10.1007/s10898-006-9033-0

ORIGINAL ARTICLE

An efficient procedure for dynamic lot-sizing model
with demand time windows

Hark-Chin Hwang

Received: 3 May 2005 / Accepted: 17 April 2006 /
Published online: 30 June 2006
© Springer Science+Business Media B.V. 2006

Abstract We consider a dynamic lot-sizing model with demand time windows where
n demands need to be scheduled in 7 production periods. For the case of backlogging
allowed, an O(T?) algorithm exists under the non-speculative cost structure. For the
same model with somewhat general cost structure, we propose an efficient algorithm
with O(max{T?, nT}) time complexity.

Keywords Dynamic lot-sizing model - Demand time window - Non-speculative cost
structure - Dynamic programming - Production

1 Introduction

In past mass production systems where the relationship between suppliers and custom-
ers was not a particularly important factor, demands were generated by aggregating
requirements by periods based on forecasting. That is, each demand was given by a
period. In this present economy, however, as strategic partnership is a major success
factor for both suppliers and customers, demands are made in long-term and volume-
based contracts. As a result, demands are given by an interval of periods called time
windows for the long-term agreement and no penalty is incurred if the total required
volume is met during the periods. Such a situation of demand time windows can also
be seen in third party logistics and vendor managed inventory practices (Lee et al.
2001; Jaruphongsa et al. 2004 a,b).

In this paper, we consider the single-item dynamic lot-sizing model with demand
time windows where n demands need to be scheduled in 7 production periods. Each
demand’s time window is specified by the earliest due date (EDD) and the latest
due date (LDD), during which no inventory and backlogging costs are incurred.

H. -C. Hwang (<)

Department of Industrial Engineering, Chosun University,
375 Seosuk-Dong, Dong-Gu, Gwangju 501-759, South Korea
e-mail: hchwang@chosun.ac.kr

@ Springer

12 J Glob Optim (2007) 37:11-26

When each demand’s time window is just a single period (EDD =LDD), the model
is reduced to the classical dynamic lot-sizing model. Since the seminal work of
Wagner and Whitin (1958), extensive research has been done for the classical dynamic
lot-sizing model (Wolsey 1995; Brahimi et al. 2006). In general, however, not much
study has been conducted on the model with demand time windows. To deal with the
time window consideration in production planning, Lee et al. (2001) first studied the
dynamic lot-sizing model with time windows. To generate optimal production sched-
ules, they proposed two procedures: one with complexity O(7?) for the case with ‘no
backlogging’ and the other with complexity O(7?) for the case with ‘backlogging’.
The procedures are developed under the non-speculative cost structure that the unit
production cost in period ¢ is at most the unit production cost in period —1 and also at
most the unit production cost plus the backlogging cost in period 7+ 1. For the general
cost structure where no such restrictions are imposed, Hwang and Jaruphongsa (2006)
recently provided an optimal procedure with complexity O(nT3).

The classical dynamic lot-sizing model under the non-speculative cost structure can
be solved easily in O(T?) by ordinary dynamic programming procedures. Further-
more, by applying the monotonicity property intrinsic in the model (or the Monge
property in general; Aggarwal and Park 1993), we can increase the efficiency of the
main recursion procedure of the dynamic programming once we have computed
the necessary cost data by preprocessing. Federgruen and Tzur (1991), Wagelmans
et al. (1992) and Aggarwal and Park (1993) independently demonstrated the remark-
ably fast locating of an optimal production schedule in a time of O(T). Therefore,
for the dynamic lot-sizing model with time windows it would be worthwhile try-
ing to develop a more efficient algorithm with less complexity than that presented
by Lee et al. (2001). As stated in Lee et al. (2001), when backlogging is not al-
lowed the development of a more efficient algorithm with complexity less than O(72)
seems very unlikely. Therefore, in this study we focus on the case with backlogging
allowed.

In this paper, we present a solution procedure with complexity O(max{T?, nT}) for
the dynamic lot-sizing model with time windows under non-speculative cost structure
where backlogging is allowed. In our case, we have a rather more general cost struc-
ture than the non-speculative cost structure that Lee et al. (2001) were restricted to;
it is merely assumed that the unit production cost in period ¢ is at most the unit pro-
duction cost in period ¢ — 1 without any restriction on backlogging costs. Note that the
number of demands 7 is O(7?) since we aggregate and designate demands by intervals
of periods. Hence, when #n increases to the maximum number of time windows in T’
production periods, the procedure in this paper has the same complexity of O(T3) as
the procedure by Lee et al. (2001). However, the complexity O(max{T?, nT}) seems
the best possible result achievable in theory since the preprocessing itself could not
be carried out in time less than O(max{T?, nT}). As we shall see, the complexity of
the main recursion procedure is merely O(72).

In the next section, we first define the analytical model for the problem and review
optimality properties developed so far. In Sect. 3, the optimal solution procedure is
presented under the assumption that all the necessary cost data has been calculated
by preprocessing. In order to increase the preprocessing efficiency, the concept of
selection measures and their properties are introduced in Sect. 4. The preprocessing
steps are described in Sect. 5, which make the optimal solution procedure run up to
O(max{T?, nT}). Finally, we present the conclusion.

@ Springer

J Glob Optim (2007) 37:11-26 13

2 The model and review of the optimality properties

Suppose that we have n demands to be satisfied over the planning horizon 7. We
define the following parameters and decision variables for our model.

Parameters
d; : the required quantity for demand i fori =1,...,n.
[Ei, Li]: the time window of demand i for i = 1,...,n where demand is EDD and

LDD are denoted by E; and L;, respectively. If a demand is satisfied during its
time window no costs of inventory holding and backlogging are incurred.

K;: the fixed cost of production in period ¢.

p: : the unit production cost in period .

h; : the unit holding cost in period ¢.

g: : the unit backlogging cost in period ¢.

For the purpose of notational convenience, we additionally give definitions for period

T'+1:letKryy =pry1 =hry = gre1 = 00.

Decision variables

vir :the amountdispatched in periodt fordemandifori=1,...,nandt=1,...,T.
x; :the amount replenished in period t fort =1,..., 7.

I} : the inventory level in period ¢ for t = 1,..., T.

I; : the backlogging level in period t fort =1,...,T.

The mathematical formulation of the problem is given by:

T
Minimize " (K;8; + pixe + hed; + g,")
=1
Subject to
n
XA S~) = Yy = =1, t=1,...T,
i=1
xlEMat’ t:1,...,T,
Z Yie = d, i=1,...,n,
telEj,Li]
yie = 0, i=1,...,n, telEi L],
yie =0, i=1,...,n, té¢[E;L;,

x>0, I7>0, I; >0, §€{0,1}, r=1,....T,
I =1y =11 =1; =0,

where M is a very large number.

Lee et al. (2001) assumed the non-speculative cost structure that p, 1 > p; for all
t=2,3,...,T and that p;, 1 + g1 = ps forallt =1,2,..., T — 1. However, in this
paper we consider the more general case that p, 1 > p, forall t =2,3,..., T with no
restriction on backlogging cost.

We next summarize the two optimality properties developed in Lee et al. (2001).
It is not hard to see that the properties in the following hold under our cost structure
of p;,_1 > p; as well as under the non-speculative cost structure.

@ Springer

14 J Glob Optim (2007) 37:11-26

Property 1 There is an optimal solution such that y;= d; for some t € [E;, L;] for
i=1,...,n

That is, there exists an optimal solution such that each demand i is satisfied by a single
dispatch.

Property 2 [t is optimal to satisfy a demand either by the last replenishment before its
LDD or by the first replenishment at or after its LDD.

Hence, if a demand has a production in its LDD, then it is not replenished in any
period earlier than the LDD.

Based on these two properties, an algorithm with complexity O(73) was developed
by Lee et al. (2001). The complexity of O(T?) results from the preprocessing steps to
find cost data since the main dynamic programming procedure is executed in less time
of O(T?). In our algorithm an optimal production schedule will be found in merely
time O(max{T2, nT}). This is accomplished by reducing the computational steps in
preprocessing. The time reduction from O(T3) to O(max{T?, nT}) is chiefly based
on the following order invariance property: when satisfying a demand by inventory
from a production at period 2, its unit cost is the unit production cost at A plus the
unit inventory holding costs accrued. In the case that the same demand is fulfilled by
backlogging from a production at period y, where y > A, the unit cost for satisfying
the demand is the unit production cost at y plus the unit backlogging cost accrued. We
sort demands in nondecreasing (or nonincreasing) order by the difference between
these two unit costs and suppose that demand i precedes demand j in the sorted list.
Then, we have the invariant order of demands in the sense that demand i always
precedes demand j for any two production periods A and y,1 < A < y < T, whenever
time windows of both demands i/ and j belong to the interval [A, y].

To denote cumulative inventory holding cost and cumulative backlogging cost, we
define Ay, and gy, Forany 1 <s <t < T, let

hey =hs+hsp1+---+h and g =g+ 81+ +8&-

We also let Ay = gs; = 0if s > ¢.
Now, we present the following example to illustrate the optimality properties and
to help the reader understand notations that will be developed in the next section.

Example 1 We are going to satisfy eight demands 1,2, ..., 8 in the periods 1,2, ..., 14.
As shown in Table 1, most unit costs of production, inventory holding and backlogging
are 1 except that the unit production costs of periods 1, 2, and 3 are all 3, the unit
holding cost of period 5 is 3, and the unit backlogging costs of periods 8 and 10 are 2
and 4, respectively. The time windows of the eight demands are specified in Table 2.
In addition, in Fig. 1, each demand’s time window is denoted by a line segment across
the 14 periods and its index is represented in the circle. Suppose that we have two
consecutive productions in periods A = 3 and y = 12. Then, from Property 2 we can
see that demands 6, 7, and 8 are replenished at or after the period y. However, it
is not certain whether the other demands are replenished either from period A or y
since the decision relies on production costs with inventory holding and backlogging
costs. Each demand’s unit replenishment costs from periods A and y, which include
holding and backlogging costs, respectively, are described in the left and right of its
time window, respectively. With the example of demand 3, the unit production cost at
A = 3 plus the cumulative inventory cost is p) + h;_ g,—1 = 4 and the unit production

@ Springer

J Glob Optim (2007) 37:11-26 15

Table 1 Unit cost data in Example 1

Periods 1 2 3 4 5 6 7 8 9 10 1 12 13 14

Unit production cost 33 3 1 1 1 1 1 1 1 1 1 1 1
Unit holding cost 1 1
Unit backloggingcost 1 1 1 1 1 1 1 2 1 4 1 1 1 1

—_
—_
(98]
—_
—_
—
—_
—
—_
—_
—_
—

Table 2 Demand time windows in Example 1

Demands 1 2 3 4 5 6 7 8

Time windows [14] [111] [48] [69] [510] [9.02] [214] [1114]

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 o—(1)——213

3

]
]
1
1
]
1
1
1
I
) 5
1
1
1
]
1
1
]
1
1
1

A=3 y=12

Fig. 1 Demands of Example 1 with time windows and unit replenishment costs

cost at y = 12 plus the cumulative backlogging cost is p, + g7, ,,—1 = 9. In the case
of demands 1 and 2, no holding cost but the production cost of p, = 3 is incurred.
Comparing the costs described in the figure between replenishments in A and y, we
can see that demands 1, 3, and 5 are replenished from A, and 2 and 4 from y.

From this to end, most arguments are based on intervals of periods. By the interval
[A,y] we assume that there are consecutive productions at the two periods A and
y,1 < i <y < T+ 1. We say that a demand i is proper with respect to the interval
[A, y]ifA < E; < L;j < y.Also,anydemandiwith E; < A < L; < y iscalled A-crossing
with respect to the interval [, y]. Then, if a demand is either proper or A-crossing with
respect to the interval [, y], it is called demand with the interval [, y]. In Example 1,
the demands with [A, y] are 1 through 5 for which the A-crossing demands are 1 and
2, and the proper demands are 3, 4, and 5.

For notational convenience, we introduce a simple indicator function f defined as
f(s,t) = 1ifs < ¢,0 otherwise. It can be used for checking whether a demand is proper
or crossing with respect to an interval. By the multiplication of two values f(, E; — 1)
and f(L;,y — 1), we can determine whether a demand i is proper with the interval
[A,] or not. The multiplication f (A, E; — 1) - f(L;,y — 1) results in one if and only

@ Springer

16 J Glob Optim (2007) 37:11-26

if demand i properly belongs to the interval. Similarly, for checking A-crossing of a
demand i, we can use the value of the multiplication f(E;,A) - f(A,L;) - f(L;,y — 1).
The value is one if and only if the demand is A-crossing with respect to the interval
(2,]

3 Optimal solution procedure

Before describing the optimal solution procedure, we first present the necessary nota-
tions, which make it possible to arrange and group demands by EDD and LDD.

e «(i): the sorted list of demands in nondecreasing order of EDD so that E,q) <
Ea(i+l) fori= 1, 2, ceey n—1.

e a(?) : the largest index i in the list « such that its corresponding demand « (i) has
EDD equal to ¢, i.e., Eyq = ¢t fort = 1,2,...,T. If no such a(¢) exists, we let
a(t) = a(t — 1), where a(0) = 0. Then all the demands with EDD of ¢ are the ones
a(@) fora(t—1) <i<a().

e B() : the sorted list of demands in nondecreasing order of LDD so that Lgg) <
Lﬁ(i+1) fori = 1,2,. o= 1.

e D(?) : the largest index i in the list 8 such that its corresponding demand (i) has
LDD equal to ¢, i.e., Lgg = tfort = 1,2,...,T. If no such b(r) exists, we let
b(t) = b(t — 1), where b(0) = 0. Then all the demands with LDD of ¢ are the ones
B@),forb(t—1) <i < b(1).

Note that both the lists (i) and (i) can be computed in O(n log n). Also, we can have
a(t) and b(¢t) fort =1,2,...,T in O(n + T) using the lists « (i) and B(i), respectively.

We next consider the associated cost data when we have consecutive productions
at two periods A and y.

e hload(2, y): the total amount of the proper demands with the interval [,] which
are replenished from period A by carrying inventory.

e hcost(%,y): the inventory holding cost (not including production cost) for satisfy-
ing the proper demands corresponding to hload(a, y).

e phload(a, y): the total amount of the demands with the interval [A, y] which are
replenished from period A. We note that phload(}, y) > hload(a, y).

e pgcost(h,y): the total production (not including setup) and backlogging costs in
period y for satisfying the demands with [A, y] which are cheaper than replenish-
ment by period A.

In the previous example, we have hload(,y) = d3 + ds, hcost(r,y) = d3 + 2ds,
phload(X, y) = dy + ds + ds, and pgcost(, y) = 2dy + 7d4.

In the classical lot-sizing model, most of the decomposition principle allowing
dynamic programming is based on regeneration periods ¢ which do not carry or back-
log any inventory. However, when calculating the optimal solution for the dynamic
lot-sizing model with time windows, as implied in Property 2, the most important
information for decomposition is the periods in which productions are established.
Under the condition that y is a production period for y = 1,2,..., T + 1, let F(y) be
the optimal cost in satisfying the demands whose LDDs are strictly less than y, i.e. the
demands B(i) for 1 <i < b(y —1). Note that no setup cost K,, is incurred in period y
when calculating F(y) but only unit production cost p,,. We consider the cost F(T +1)
in detail. Recall that the unit costs p7jand g7 are set to co. Hence, no demands will

@ Springer

J Glob Optim (2007) 37:11-26 17

be replenished by the production in period 7 + 1 but will be by productions in periods
1,2,...,T. This means that F(7T + 1) is the very optimal cost we would like to find.
We can compute F(y) for y =1,2,...,T + 1 by the following recursion procedure:

F1)=0
F(y) = 1n}}n {F(A) + K + p;. - phload(, y) + hcost(A, y) + pgeost(x, y)} .
<i<y

Given all the necessary cost data by preprocessing, the optimal solution can be found
in O(T?). Now, the remaining thing for computing F(7 + 1) is to find the cost data for
intervals [A, y]for 1 < A < y < T+ 1, which will be provided in the next two sections.

4 Selection measures

Keeping in mind the definitions of the cost data hload(a, y), hcost(a, y), phload(a, y),
and pgeost(A, y) for1 < A <y < T+1,we can compute them easily in an enumerative
way, although inefficient. However, in order to obtain the cost data for [A,] with min-
imal computational burden, we may need to develop firstly a scheme that efficiently
determines replenishment periods A or y for the demands with [, y] and secondly
procedures to calculate hload(, y), hcost(,y), and phload(,y) for the demands
replenished in period A, and a procedure to calculate pgcost(i, y) for the demands
replenished in period y. We first take into account how to efficiently determine the
replenishment periods for the demands with [A,y],1 <A <y < T + 1. In the period
T + 1, the production and backlogging costs of T + 1 are set to co. This makes it easy
to obtain the cost data for the interval [A,7 + 1],1 < A < T + 1 since the demands
with the interval are all replenished by period A. Hence, we will focus on the intervals
AyLl<i<y<T.

Consider the demands i in the interval [A, y], i.e., those i with [E;, L;] C [A,y].
Note that any ‘proper’ demand i with the interval [A, y] satisfies that [E;, L;] C [A, y].
The decision whether a demand i in the interval [, y] is replenished either at period
A or y can be easily made based on by the value of (p; + h) g,—1) — (Py + &L:y—1)-
If it is no larger than zero, then the demand must be replenished by production
at period A, otherwise it is replenished by production at period y. Let 6;(A,y) =
(Pa+hy g—1) — (Py +81.:.,—1) and we call it selection measure for demand i in the inter-
val [A, y]. In particular, for the interval [1, T] we sort its demands by nondecreasing
order of the selection measure 6;(1, T) and let 7 (i) be the resulting list of demands
ordered so that 0,(1)(1,T) < 0,2)(1,T) < -+ < 0z (1, T). Then the following prop-
erty enables us to efficiently determine replenishment period either A or y for demands
in the interval [A,] just by keeping the sorted list 7.

Property 3 For any two demands i and j in the interval [A,y], 1 < A <y < T, it holds
that 6;(\,y) < 0j(A,y) ifand only if 6;(1,T) < 6;(1,).

Proof Note that hy g;_1 = h1)—1+hy g1 ifA < Ejand g1, 71 = g1,.y—1 + &y, 71 if
L; < y.Hence, if demand i is in the interval [A, y](A < E; < L; < y), we have

0i(A,y) = (Pr + Iy E—1) — Dy + 8L —1)
= (p1+hig-1) — T+ 8L, 7-1) + Ox — Py —P1+pP71) — A1+ 871

=0:(1,T)+ (pr —py —P1+pP1) — hi)—1 + & 7-1-
@ Springer

18 J Glob Optim (2007) 37:11-26

We see that 6;(%,y) is written by 6;(1,T) and the constant (p, + p, — p1 — p7) -
hi,—1 + gy, 7—1 which does not depend on the index i but only on the periods A and
y. This implies that 6;(A,y) < 6;(A,y) if and only if 6;(1,T) < 6;(1,T), for any two
demands i and j in [A,], thereby proving the property. O

Thus, as far as demands in [A, y] are concerned, their order by selection measure
0;(1, y) remains the same as that in the list 7r. This invariant property of the list = will
play a crucial role in computing the cost data for ‘proper’ demands. However, it does
not hold for A-crossing demands because we can easily find cases that 6; (A, y) < 6;(A,y)
even though 6;(1,T) > 6;(1, T) when demand i or j does not belong to [%, y]. Therefore
we will later develop another selection measure for A-crossing demands.

Using the selection measure 6;(, y), we can divide the list of demands into two dis-
joint lists: one containing demands with the value of selection measures at most zero
and the other containing demands with the value of selection measures greater than
zero. The proper demands in the former list will be replenished in period A whereas
the proper demands in the latter will be in period y. Let c(A,y) for1 <i <y < T be
the largestindex i > O such that j > i for all ‘proper’ demands 7 (j) with 6,5 (%, y) > 0.
If no such index exists, we let c(A,y) = n. We call c(}, y) the critical index for the
interval [, y]. Hence, according to this critical index, we can choose either the period
A or y to replenish a proper demand.

For a proper demand i with [A — 1, y], consider the value of 9;(A,y) — 6;(A — 1,y):

Oi(A,y) — 6:(A —1,y)
= ((pr + My g—1) — Oy +8Liy—1) — (Pr—1 +o—1E—1) — Py +8Liy—1))
=Ppr—Pi-1— 1.
Since p; < p,_1, we have 6;(A,y) —6;(A — 1,y) <0, i.e.,
Oi(h,y) < 0i(x —1,9).

Note that this relationship between selection measures for the intervals [A — 1,y]
and [A,y] holds for all proper demands with [A — 1,y] and thus implies that for
2<i<y=<T

cA—1,9) <cr,y).

By this inequality, we can quickly find the critical index for an interval by search-
ing only a portion of the list & rather than the whole list. Let ¢(A, T + 1) = n and
¢(0,y) =0forany 1 < A,y < T. Then, given c(— 1,y), we can get the index c(%, y)
for 1 < X < y < T by the following:

min{i —1: 0,4 (A7) > 0,A < Ez) < Lyg <y,c(h—=1,y)+1=<i=<nj, (1)
n,

c(A,y) = min {

Thus, for a period y, we can find all the critical indices c(A,y) for 1 < A < y in
time O(max{7,n}) using the recursion (1). Hence, all the critical indices c(%,y) for
1 < A <y < T can be obtained in time O(max{T?2, nT})).

Analogously with 6;(%, y), we define another selection measure 6; (i, y) which will
be used for deciding whether A-crossing demands i with the interval [), y] must be
replenished in period A or y. Let 6/(A, y) = ps — (py +&1,.y—1)- Thus, we know that if
0/(x,y) < 0 then the demand i will be replenished in period A otherwise in period y.
Similar to Property 3, we also have an invariance property for the selection measure

@ Springer

J Glob Optim (2007) 37:11-26 19

6/ (x, y), which can easily be shown. We notice that the property holds not only for the
A-crossing demands but for any demands with LDDs at most y.

Property 4 For any two demands i and j with L; < y and L; < y, it holds that
6/, y) < 9]{()»,1/) ifand only if 9;(1,T) < 9]{(1, Tforl<x<y<T

Let 7’ be the sorted list of demands by the measure 6/ (1, T) for the interval [1, T].
The critical index ¢’(%, y) for the A-crossing demands with [A,y], 1 <A <y < T,is
defined similarly as c(%, y) and can be found by

min{i — 1:6]’1,(1.) (0 ¥)>0, Epry <A<Lpry<v, (A —1,y)+1<i<n},
n

c/(k,y):min[(2)
where ¢/(A, T+ 1) =nand ¢'(0,y) = 0 for any 1 < A,y < T. Thus, given a period y,
we can find all the critical indices ¢/(A,y) for 1 < A < y in time O(max{7T,n}) using

the recursion (2).

5 Computing window cost data

In this section, we deal with how to compute the cost data for [A, y], i.e., hload(%, y),
hcost(x, y), phload(x, y), and pgcost(, y), given the sorted lists of demands 7 and 7’.
They will be found by recursion from the cost data for [A — 1, y] and the basis cost
data for [1, y] will be calculated in a simple enumerative way.

First, we would like to present recursion formulas for deriving the cost data for
[%,y] based on the cost data for [» — 1,y], A = 2,3,...,y. The formulas are easily
established once we know the relationship between the demands with [» — 1, y] and
those with [, y]. Taking into detailed account the demands with [A — 1,], which con-
sist of demands with LDD = A —1 and demands with LDD > X —1, then the demands
with [A — 1,y] whose LDD > A — 1 are, in fact, the demands with [, y], which are
further classified into the A-crossing and proper demands. From now on, the demands
with [A — 1, y] are thought to consist of demands with LDD = A — 1, A-crossing and
proper demands with [A, y]. Then, for the three sets of demands we observe eight
types of demands based on the replenishment periods in the intervals [A — 1, y] and
[*,y] (See Table 3).

For the demands with [A — 1, y] whose LDD = A — 1, we have two types: type-B1
in which the demands are replenished in period A — 1 and type-B5 in which those are

Table 3 Types of demands with [A — 1,]

Demands with [A — 1,] Types Replenishment periods
=1yl (A v]

Demands with L; = A — 1 By r—1 -

By 14 -
A-crossing demands with [A, y] Cq A—1 A

G Y A

C3 14 Y
Proper demands with [, y] Py A—1 A

Py y A

P3 14 14

@ Springer

20 J Glob Optim (2007) 37:11-26

replenished in period y. The demands of type-B; and of type-B; are mutually exclusive
in the sense that they are all either exclusively type-B; or exclusively type-B; because
all they have the same unit replenishment cost and hence they are replenished in the
same period, either X or y.

In the A-crossing demands with [,], we have three types: type-C; in which the
demands are replenished in period A — 1 with respect to the interval [A — 1,y] and in
period 1 with respect to [A, y]; type-C> in which they are replenished in period y with
[A-1, y]butin A with [A, ¥]; and type-C3 in which they are replenished in period y with
respect to both the intervals [A-1, y] and [A, y]. The reverse case of type-C, does not
exist that it is economical to satisfy a A-crossing demand by the production in period
A — 1 with respect to [A — 1, y] while it is advantageous to satisfy the demand by the
production in period y with respect to [A, y]. This is because if the unit replenishment
cost in period A — 1 (i.e., pp—1 + A1 ;) is at most that in period y (i.e., py + g1 —1),
then the cost in period X is also no greater than that in period y due to the cost
structure of p;_1 > p;.

Likewise, we can also classify the proper demands with [, y] into three types, types-
Py, -P>, and -P3 corresponding to the types-Cy, -Cy, and -Cs, respectively. These eight
types are summarized in Table 3.

Based on the eight types and the cost data hload(x—1, y), hcost(A—1, y), phload (A —
1,y), and pgcost(r — 1, y), we first present the methods for calculating hload(%, y) and
hcost(a, y), followed by those for phload(a, y) and pgcost(r, y).

5.1 Computing hload(2, y) and hcost(h, y)

The data hload(,y) and hcost(,y) for 2 < A < y < T will be computed from
hload(x — 1,y), and hcost(» — 1, y), respectively. To efficiently compute hload(2, y)
from hload(x — 1, y), we first need to investigate in detail the demands which are used
in computing the data hload(Az — 1, y). The demands associated with hload(x — 1, y)
are all proper with [— 1, y] and are replenished in period A — 1. In terms of the eight
types, they are characterized as type-C; with EDD= A and type-P;. So, hload(A —1, y)
can be written as:

hload(x — 1,y) = (type-C; with EDD = 1) + (type-P;).

In the case of hload(h,y), the associated demands are the ones proper with [A, y]
and are replenished in period A, i.e., those of types-P; and -P,. Hence, with the
representation of hload(: — 1, y) above, we can denote hload(a, y) as follows:

hload(x,y) = (type-P;) + (type-P2)
= hload(x — 1,y) — (type-C; with EDD = 1) + (type-P>).

Now, we consider the demands of type-C; with EDD = X and type-P>. Note that
the demands with [A — 1,y] whose EDD = A are «(i) with Lyg < y —1fori =
a—1D+1,ax — 1)+ 2,...,a(r). Moreover, among the demands with [A — 1,y]
whose EDD = A, those replenished in period » — 1 rather than in y are «(i) for
i=ak—1)+1,a(x —1)+2,...,a()) satisfying the two conditions:

Loy <y —1 and p,1+hi1 <py+8L,,y-1-
@ Springer

J Glob Optim (2007) 37:11-26 21

Using the indicator function f, for these two conditions we obtain that
Lyiy <y —1 ifandonlyif f(Lyi,.y —1)=1and
i1 thio1 =py +8L,4y-1 fandonlyif f(pa_1 +hi—1.py + 81,4 -1 = 1.
Hence, the term (type-Cy with EDD = 1) is represented by
(type-Cy with EDD = 1)

a(r)
= Z FLaiysy = D Pi1 +M—1,Py + 8Ly 1) * dali-
i=a(—1)+1
Next, consider the demands of type-P,. Recall that any demand i satisfying f (&, E; —
1) - f(Li,y — 1) = 11is proper with [, y]. Also, note that demands 7 (i) proper with
[A,yl,fori=cx —1,y)+1,c(x —1,y) +2,...,c(r,y), are replenished in period y
with [A — 1, y] but in period 1 with [A, y]. Hence, the total sum of type-P, demands is
c(r,y)
(type-P2) = Z FOLErey — Df(Lry,y — 1) - drpy.
i=cO—1y)+1

Finally, combining the terms (type-C; with EDD = 1) and (type-P2) the hload(x,y)
can be computed by,

hload(,y) = hload(\ — 1, y)

a(r)
- Z f(L(X(i)3 Y — 1)f(pk—1 + h)»—lvp)/ + gLa(,-),y—l) . da(i)
i=a(A—1)+1
c(h,y)
+ D fOExp — Df Ly — 1) - driy- 3)
i=c(—1,y)+1

We next consider how to compute the cost data hcost(A,y) by investigating the
demands with their costs consisting in hcost(A — 1,y). Similar to hload(A — 1,y),
the associated demands for hcost(: — 1, y) are those of type-C; with EDD = X and
type-P1. Thus, hcost(A — 1, y) can be written as

_ _(hcost of type-Cy hcost of type-Pq
heost(® —1,y) = (with EDD = A in period A — 1

— - type-Ci
— "=17\ with EDD = A

hcost of type-Pq
+h;_1- (type-P1) + (in period A ’

Since the demands of type-C; with EDD = A and type-P; correspond to those of
hload(» — 1,), we have

heost(. — 1,7) = hy_y - hload(— 1, 7) + (hcost of type-Pl) ‘

in period A

Now, consider the cost hcost(), y). As with hload(h,y), we need to deal with the
demands of types-P; and -P, and then their inventory holding costs. Considering the
formula for hcost(x — 1,y), we have

@ Springer

2 J Glob Optim (2007) 37:11-26

hcost(, y) = (hCOSt of type-P;) n (hcost of type-Pz)

in period A in period A

= hcost(A — 1,y) — hy_ - hload(A — 1,y) + (hCOSt of tYPe-Pz) .

in period A

Also, by the same argument in characterizing the demands of type-P, for hload(x, y),
we see that

hcost of type-P> ey
(in period) = 2 JOExo = DLy =D Bt dr
i=c(A—1,y)+1

Thus, we can find hcost(}, y) by the following formula:

hcost(x,y) = hcost(r — 1,y) — hy_1 - hload(x — 1,y)

c(uy))
+ 2 fONEre — Df(Laiysy = 1) - By Erg—1 - dry-
i=c(\—1y)+1

5.2 Computing phload(A, y) and pgcost(x, y)

The data phload(%, y) and pgcost(r,y) for 2 < A < y < T shall be computed in the
same way as that presented in the previous subsection. We first consider the compo-
nents of demands of phload(A — 1, y) and phload(, y) and then present the method
to obtain phload(a, y) from phload(r — 1,y). We recall that phload(xz — 1,y) is the
production and inventory holding costs for the A-crossing and proper demands with
[~ — 1, y] replenished in period A — 1. Using the eight types in Table 3, the demands
for phload(x — 1, y) are characterized to be types-B1, -C1, and -P;. Hence, we denote
phload(x — 1,y) by

phload(x — 1,y) = (type-By) + (type-C1) + (type-P).

We also see that the demands for phload(2, y) are types-Cy, -Ca, -Pq, and -P,. Then,
we obtain with the formula for phload(Ax — 1, y) that

phload(,y) = (type-Cy) + (type-C2) + (type-P1) + (type-P>)
= phload(™ — 1,y) — (type-By) + (type-C2) + (type-P2).

Consider the terms (type-By) , (type-C2), and (type-P2). Each demand of type-B; has
LDD = 1 —1 and hence it is one of the demands B(i) fori = b(A—2)+1,b(A —2) +2,
..., b(A — 1). In addition, each demand of type-B is replenished in period » — 1. We
notice that any demand with LDD = A — 1 is replenished in period A — 1 rather than
inyifp,_1 <py+8—1,y-1 08 f(Pr—1.Py +8r—1,—1) = 1. Hence, the term (type-Bj)
is stated as

b(x—1)

(type-By) = Z fOr=1,Py + &—1-1) - dpGi)-
i=b(—2)+1

The demands of type-C, are replenished in period y with [A — 1, y] while they are
replenished in period A with [A, y]. Also, they are A-crossing with [1, y]. Recall that
a demand i is A-crossing with [A, y] iff f(E;, \)f (A, L)f(Li,y — 1) = 1. Then, using
the same argument in characterizing the term (type-P) as Zf:\c’(yx)—l,y) SO Eqy —
@ Springer

J Glob Optim (2007) 37:11-26 23

Df(Lzay, v — 1) - dr() in the previous subsection, we can see that the term (type—Cz)
is given by

' (ny)

(type-Co) = D [(Exiis WO Lo)f L.y = 1) - dorgiy-
i=c'G—Ly)+1

Then, inserting the terms (type-Bi), (type-C3), and (type-P») into the formula for
phload(a, y), we finally obtain that

bG—1)
phload(x, y) = phload(x = 1,y) = D f(ps—1,py + &i-1,-1) - dpi)
i=b(—2)+1
()
+ D fErw MO L) Ly — 1) - dgy
i=c (= Ly)+1
c(dy)
+ D fOuExp = DfLrysy = D) - dugi- ®)
i=c(A—1,y)+1

Next, consider the cost pgcost(A, y) which is the total production and backlogging costs
in period y. As was done previously, we determine the demands for pgcost(A — 1,y)
to be types-Ba, -Cy, -C3, -P2, and -P3. Hence we have

B [pgcost of pgcost of pgcost of
pgeost(® — 1,y) = (type-B>) + (type-C; + type-C3

n pgcost of " pgcost of
type-P type-P3) °
In the case of pgcost(A, y), its demands are types-C3, and -P3. Hence, from the formula
for pgcost(r — 1,y) we have

pgcost(r,y) = (ngOSt Of) 4 (ngOSt Of)

type-C3 type-P3
_ B _ (pgeostof) (pgeostof) [pgcost of
= pecost: = Ly) (type-B2) (type-C2 type-P2)

Note that the demands of type-B; are exclusive with those of type-Bj. That is, demand
B@)istype-B2if b(A —2)+1 <i <b(A—1)and p;_1 > py +gi—1,y—1 OF f(Pr—1,Py +
&.-1,,-1) = 0. Hence, the replenishment cost in period y for demands of type-By is
given by

b(r-1)

cost of
(E));gpe—Bz) = Z (1 = f(Pr=1,Py + &-1y-1)) - Oy + &r—1y-1) - dpGi)-
i=b(A—2)+1

The two terms (pgcost of type-C;) and (pgcost of type-P;) are easily calculated by
multiplying the replenishment costs in the period y to the terms (type-C>) and
(type-P2). Hence, we have

@ Springer

24 J Glob Optim (2007) 37:11-26

' (y)
(pgcost of type-Cy) = Z F(Exy, MV Oy Ly iy)
i=c'(A—1,y)+1
Xf(er’(i), y—1- (py +gLﬂ’(i)7V—1) : dzr’(i)7
c(h.y)
(pgeostof type-Po) = > f(LExg — 1)
i=c(A—1,y)+1

Xf(LJT(i)7 Yy — 1)([’)/ + gL,,(,-),y—l) : dﬂ(i)'
Then, the cost of pgcost(%, y) is obtained by

pgcost(X, y) = pgeost(h — 1,y)

b(—1)
— Z A = f@Pr-1,Py + 8-1y-1) - Oy + &r—1,y—1) - dp(i)
i=b(—2)+1
c'(ny)
- Z fEq@y, Vf O, Lyrgy)
i=¢' (0 —1,y)+1
Xf(Lxy ¥y =1 - (Py + 8L -1) - daii)
c(r,y)
- z FOGEz@ — Df (Lrysy — D@0y + 8Ly —1) * dri-
i=c(—1,y)+1

(6)

Collecting the formulas (3) through (6), we can compute the cost data for [1, y] from
the data for [A — 1, y]. This calculation is done by the procedure CostingByEDD
(Fig. 2). Note that we can also use this procedure in calculating cost data for intervals
AT+1,1<r<T+1.

Then to provide the basis cost data, we present the procedure CostingByLDD,
which computes in a simple manner all the cost data for [1,y], y = 2,3,..., T +1
(Fig. 3). By the definitions of ¢(1, y), ¢/(1,) and the indicator function, it is clear that
the formulations in the procedure generate the cost data for [1, y].

The final task remaining is to initialize the data with respect to the interval [1, T
and to provide a systematic way to compute cost data for all intervals. These are
done via the procedure called WindowCosting (Fig. 4). Note that the selection mea-
sures calculated in this procedure are only for the interval [1, T] and the sorting steps
are performed only four times. It is clear that the procedures CostingByLDD (1, y)
for y = 2,3,...,T + 1 run in O(nT). By the definition of a and b, it holds that
a(k—1) <a(x) and b(A — 1) < b(A). Then, considering the relationships between the
critical indices c(A —1,y) < c(A,y) and /(A —1,y) < ¢/(A, y), we can see that the pro-

CostingByEDD(4, »
Find the critical indices ¢(4,7), ¢'(4,) using the recursions (1) and (2), respectively;
Find hload(2, y), hcost(4, y), phload(A, y), and pgcost(4,) using (3), (4), (5) and (6), respectively;

Fig. 2 Procedure CostingByEDD

@ Springer

J Glob Optim (2007) 37:11-26 25

CostingByLDD(1, »
Find the critical indices ¢(1,%), ¢'(1,) using the recursions (1) and (2), respectively;
Z::J)f G E =D Ly 7~ dgiys
2::,7)1, GE iy =D L7 =D g 1oy
Z T Sy D W Ly)f L7 =Dy
3 PO E iy =D f Ly 7 =)y

peeostLy) = 37 fEeiDF U L) Ly 7 =D(P, + &4, 1) de
+Z::c(l,7)+l f(l’En(i) -.l)f(Llr(i)’y—l)(py +g1.,(,,,7~1)'dn(i);

]

hload(l,y)

heost(1,7)
phload(L,y)

It

Fig. 3 Procedure CostingByLDD

WindowCosting
Compute (1,7) and 6/(1,7) fori=1,2, ..., n;
Sort demands by the selection measures 6(1,7) and 6/(1,7), keeping the results to = and 7,

respectively;
Sort demands by EDD and LDD and keep the results to & with a and f with b, respectively;
for y=2to T+1
CostingByLDD(1, »);
for A=2to »-1
CostingByEDD(4, »);

Fig. 4 Procedure WindowCosting

cedures CostingByEDD(2, y) for A =2,3,...,y — 1 are performed in O(max{T,n}).
Hence, the overall complexity of the procedure WindowCosting is O(max{72, nT}).

6 Concluding remarks

For the dynamic lot-sizing model with demand time windows where backlogging is
allowed, we have designed an optimal algorithm with complexity O(max{7?, nT}).
This algorithm is mainly based on the order invariance property in which the order
of demands, according to the difference between the unit cost when replenished from
period 1 and that from period 7, is invariant for any two consecutive production
periods A and y whenever the demands belong to the interval [A,y]. The prepro-
cessing procedure WindowCosting with O(max{7?, nT}) is used to compute the cost
data with respect to intervals of periods. Once the cost data are found, the main
dynamic programming procedure is performed in O(7?). As we consider it very
difficult to create a better preprocessing algorithm than WindowCosting, the devel-
opment of a more advanced optimal solution procedure with better complexity than
O(max{T?, nT}) is unlikely.

@ Springer

26 J Glob Optim (2007) 37:11-26

Acknowledgements The author would like to thank the anonymous referees for their comments in
improving the paper. He also really appreciates a thorough review from one of the referees despite
many mistakes in the first version of the paper. This study was supported in part by research funds
from Chosun University, 2006.

References

Aggarwal, A., Park, J.K.: Improved algorithms for economic lot size problems. Oper. Res. 41, 549-571
(1993)

Brahimi, N., Dauzere-Péres, S., Najid, N.M., Nordli, A.: Single item lot sizing problems. Eur. J. Oper.
Res. 168, 1-16 (2006)

Federgruen, A., Tzur, M.: A simple forward algorithm to solve general dynamic lot sizing models with
n periods in O(nlogn) or O(n) time. Manag. Sci. 37, 909-925 (1991)

Hwang, H.-C., Jaruphongsa, W.: Dynamic lot-sizing model with demand time windows and speculative
cost structure. Oper. Res. Lett. 34, 251-256 (2006)

Jaruphongsa, W., Cetinkaya, S., Lee, C.-Y.: A two-echelon inventory optimization model with demand
time window considerations. J. Global Optim. 30, 347-366 (2004a)

Jaruphongsa, W., Cetinkaya, S., Lee, C.-Y.: Warehouse space capacity and delivery time window
considerations in dynamic lot-sizing for a simple supply chain. Int J. Prod. Econ. 92, 169-180
(2004b)

Lee, C.-Y,, Cetinkaya, S., Wagelmans, A.P.M.: A dynamic lot-sizing model with demand time windows.
Manag. Sci. 47, 1384-1395 (2001)

Wagelmans, A.PM., Van Hoesel, S., Kolen, A.: Economic lot-sizing: an O(n log n)-algorithm that runs
in linear time in the Wagner-Whitin case. Oper. Res. 40, S145-S156 (1992)

Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model. Manag. Sci. 5, 89-96
(1958)

Wolsey, L.A.: Progress with single-item lot-sizing. J. Oper. Res. 86, 395-401 (1995)

@ Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

